Cross-Entropy for Monte-Carlo Tree Search
نویسندگان
چکیده
Recently, Monte-Carlo Tree Search (MCTS) has become a popular approach for intelligent play in games. Amongst others, it is successfully used in most state-of-the-art Go programs. To improve the playing strength of these Go programs any further, many parameters dealing with MCTS should be fine-tuned. In this paper, we propose to apply the Cross-Entropy Method (CEM) for this task. The method is comparable to Estimation-of-Distribution Algorithms (EDAs), a new area of evolutionary computation. We tested CEM by tuning various types of parameters in our Go program MANGO. The experiments were performed in matches against the open-source program GNU GO. They revealed that a program with the CEM-tuned parameters played better than without. Moreover, MANGO plus CEM outperformed the regular MANGO for various time settings and board sizes. From the results we may conclude that parameter tuning by CEM genuinely improved the playing strength of MANGO, for various time settings. This result may be generalized to other game engines using MCTS.
منابع مشابه
Single-player Monte-Carlo tree search for SameGame
Classic methods such as A* and IDA* are a popular and successful choice for one-player games. However, without an accurate admissible evaluation function, they fail. In this article we investigate whether Monte-Carlo Tree Search (MCTS) is an interesting alternative for one-player games where A* and IDA* methods do not perform well. Therefore, we propose a new MCTS variant, called Single-Player ...
متن کاملCross-Entropy Method
The cross-entropy method is a recent versatile Monte Carlo technique. This article provides a brief introduction to the cross-entropy method and discusses how it can be used for rare-event probability estimation and for solving combinatorial, continuous, constrained and noisy optimization problems. A comprehensive list of references on cross-entropy methods and applications is included.
متن کاملEfficient Sampling Method for Monte Carlo Tree Search Problem
We consider Monte Carlo tree search problem, a variant of Min-Max tree search problem where the score of each leaf is the expectation of some Bernoulli variables and not explicitly given but can be estimated through (random) playouts. The goal of this problem is, given a game tree and an oracle that returns an outcome of a playout, to find a child node of the root which attains an approximate m...
متن کاملMonte-Carlo Hex
We present YOPT a program that plays Hex using Monte-Carlo tree search. We describe heuristics that improve simulations and tree search. We also address the combination of Monte-Carlo tree search with virtual connection search.
متن کاملA New Method for Parallel Monte Carlo Tree Search
In recent years there has been much interest in the Monte Carlo tree search algorithm, a new, adaptive, randomized optimization algorithm. In fields as diverse as Artificial Intelligence, Operations Research, and High Energy Physics, research has established that Monte Carlo tree search can find good solutions without domain dependent heuristics. However, practice shows that reaching high perfo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ICGA Journal
دوره 31 شماره
صفحات -
تاریخ انتشار 2008